Check Services
About
The Federal Reserve Check Services offer a suite of electronic and paper check processing options.
FedPy allows you to quickly fetch data on these Check Services.
cc()
About
FedPy.Check_Services().cc()
Returns a DataFrame
of annual data on Commercial Collected check's processed by the Federal Reserve.
This command takes in no parameters.
Example use
import FedPy
comm_collected = FedPy.Check_Services().cc()
print(comm_collected)
2
3
4
Output:
Year ... Average value per check (dollars)
2020 ... 2091.0
2019 ... 1895.0
2018 ... 1790.0
2017 ... 1638.0
2016 ... 1543.0
2015 ... 1487.0
2014 ... 1412.0
2013 ... 1329.0
2012 ... 1273.0
2011 ... 1187.0
... ... ...
1989 ... 679.0
2
3
4
5
6
7
8
9
10
11
12
13
cr()
About
FedPy.Check_Services().cr()
Returns a DataFrame
of annual data on Commercial Returned check's processed by the Federal Reserve.
This command takes in no parameters.
Example use
import FedPy
comm_returned = FedPy.Check_Services().cr()
print(comm_returned)
2
3
4
Output:
Year ... Average value per check (dollars)
2020 ... 2794.0
2019 ... 2125.0
2018 ... 1949.0
2017 ... 1705.0
2016 ... 1605.0
2015 ... 1529.0
2014 ... 1404.0
2013 ... 1301.0
2012 ... 1190.0
2011 ... 1074.0
... ... ...
1989 ... NaN
2
3
4
5
6
7
8
9
10
11
12
13
gc()
About
FedPy.Check_Services().gc()
Returns a DataFrame
of annual data on Government Check's processed by the Federal Reserve.
This command takes in no parameters.
Example use
import FedPy
gov_checks = FedPy.Check_Services().gc()
print(gov_checks)
2
3
4
Output:
Year ... Average value per check (dollars)
2020 ... 24672.0
2019 ... 2893.0
2018 ... 2784.0
2017 ... 2595.0
2016 ... 2625.0
2015 ... 2413.0
2014 ... 2259.0
2013 ... 1864.0
2012 ... 1649.0
2011 ... 1523.0
... ... ...
1989 ... 1174.0
2
3
4
5
6
7
8
9
10
11
12
13
pmo()
About
fedpy.check_services().pmo()
returns a dataframe
of annual data on postal money order's processed by the federal reserve.
this command takes in no parameters.
Example use
import fedpy
postal_money_orders = fedpy.check_services().pmo()
print(postal_money_orders)
2
3
4
Output:
year ... average value per postal money order (dollars)
2020 ... 269.0
2019 ... 266.0
2018 ... 254.0
2017 ... 243.0
2016 ... 235.0
2015 ... 226.0
2014 ... 220.0
2013 ... 220.0
2012 ... 204.0
2011 ... 197.0
... ... ...
1989 ... 97.0
2
3
4
5
6
7
8
9
10
11
12
13
all()
About
fedpy.check_services().all()
returns a dataframe
of annual data on postal money order's, government checks, commercial collected checks, and commercial returned checks all aggregated together. this command takes in no parameters.
Example use
import fedpy
all_check_services = fedpy.check_services().all()
print(all_check_services)
2
3
4
Output:
Year Volume (millions of items) Value (billions of dollars)
2020 3944.0 10014.0
2019 4548.0 8546.0
2018 4905.0 8711.0
2017 5325.0 8658.0
2016 5419.0 8314.0
2015 5637.0 8325.0
2014 5937.0 8323.0
2013 6214.0 8192.0
2012 6680.0 8431.0
2011 7023.0 8273.0
... ... ...
1989 18863.0 12971.0
2
3
4
5
6
7
8
9
10
11
12
13